Программы. Игры. Браузеры. Windows. Архиваторы

Характеристики TFT LCD дисплеев. Разница между TFT и LCD Tft разрешение

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы , телефоны, плееры , термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей . Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на канал), 24-битность эмулируется мерцанием с дизерингом .

Устройство ЖК-монитора

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны , поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток , или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

  • Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах . В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией .

Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.

  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI , HDMI и пр.).

Технологии

Часы с ЖКИ-дисплеем

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

TN + film - самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика . Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips , NEC остаются единственными производителями панелей по данной технологии.

AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment ) от Samsung.
  • Super PVA от Samsung.
  • Super MVA от CMO.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Преимущества и недостатки

Искажение изображения на ЖК-мониторе при большом угле обзора

Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ . У ЖК-мониторов, в отличие от ЭЛТ , нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц . Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320x200) вообще не могут быть отображены на многих мониторах.
  • Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей .
  • Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

См. также

  • Видимая область экрана
  • Антибликовое покрытие
  • en:Backlight

Ссылки

  • Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
  • Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)

Литература

  • Артамонов О. Параметры современных ЖК-мониторов
  • Мухин И. А. Как выбрать ЖК-монитор? . «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284-291.
  • Мухин И. А. Развитие жидкокристаллических мониторов . «BROADCASTING Телевидение и радиовещение»: 1 часть - № 2(46) март 2005, с.55-56; 2 часть - № 4(48) июнь-июль 2005, с.71-73.
  • Мухин И. А. Современные плоскопанельные отображающие устройства ."BROADCASTING Телевидение и радиовещение": № 1(37), январь-февраль 2004, с.43-47.
  • Мухин И. А., Украинский О. В. Способы улучшения качества телевизионного изображения, воспроизводимого жидкокристаллическими панелями . Материалы доклада на научно-технической конференции «Современное телевидение», Москва, март 2006.

TFT и IPS матрицы: особенности, преимущества и недостатки

В современном мире мы регулярно сталкиваемся с дисплеями телефонов, планшетов, мониторами ПК и телевизоров. Технологии производства жидкокристаллических матриц не стоят на месте, связи с чем у многих людей возникает вопрос, что лучше выбрать TFT или IPS?

Для того чтобы полностью ответить на этот вопрос, необходимо тщательно разобраться в различиях обеих матриц, выделить их особенности, преимущества и недостатки. Зная все эти тонкости, вы с легкостью сможете подобрать устройство, дисплей которого будет полностью отвечать вашим требованиям. В этом вам поможет наша статья.

TFT матрицы

Thin Film Transistor (TFT) – это система производства жидкокристаллических дисплеев, в основе которой лежит активная матрица из тонкопленочных транзисторов. При подаче напряжения на такую матрицу, кристаллы поворачиваются друг к другу, что приводит к образованию черного цвета. Отключение электричества дает противоположный результат — кристаллы образовывают белый цвет. Изменения подаваемого напряжения позволяет формировать любой цвет на каждом отдельно взятом пикселе.

Главным преимуществом TFT дисплеев является относительно невысокая цена производства, в сравнении с современными аналогами. Кроме того, такие матрицы обладают отличной яркостью и временем отклика. Благодаря чему, искажения при просмотре динамических сцен незаметны. Дисплеи, изготовленные по технологии TFT, чаще всего используются в бюджетных телевизорах и мониторах.

Недостатки TFT дисплеев:

    • низкая цветопередача. Технология имеет ограничение в 6 бит на один канал;
    • спиральное расположение кристаллов негативно сказывается на контрастности изображение;
    • качество изображения заметно снижается при изменении угла обзора;
    • высокая вероятность появления «битых» пикселей;
    • относительно низкое энергопотребление.

Заметнее всего недостатки TFT матриц сказываются при работе с черным цветом. Он может искажаться до серого, или же наоборот, быть чересчур контрастным.

IPS матрицы

Матрица IPS является усовершенствованным продолжением дисплеев, разработанных по технологии TFT. Главным различием между этими матрицами является то, что в TFT жидкие кристаллы расположены по спирали, а в IPS кристаллы лежат в одной плоскости параллельно друг другу. Кроме того, при отсутствии электричества они не поворачиваются, что положительно сказалось на отображении черного цвета.

Преимущества IPS матриц:

  • углы обзора, при которых качество изображения не снижается, увеличены до 178 градусов;
  • улучшенная цветопередача. Количество данных, передаваемых на каждый канал увеличено до 8 бит;
  • существенно улучшенная контрастность;
  • снижено энергопотребление;
  • низкая вероятность появления «битых» или выгоревших пикселей.

Изображение на IPS матрице выглядит более живим и насыщенным, но это не означает, что эта технология лишена недостатков. В сравнении с предшественником у IPS значительно снижена яркость изображения. Также, вследствие изменения управляющих электродов, пострадал такой показатель, как время отклика матрицы. Последним, но не менее значимым недостатком, является относительно высокая цена на устройства, в которых используются IPS дисплеи. Как правило, они на 10-20% дороже аналогичных с TFT матрицей.

Что выбрать: TFT или IPS?

Стоит понимать, что TFT и IPS матрицы, несмотря на существенные различия в качестве изображения, технологии очень похожие. Они обе созданы на основе активных матриц и используют одинаковые по структуре жидкие кристаллы. Многие современные производители отдают свое предпочтение IPS матрицам. Во многом благодаря тому, что они могут составить более достойную конкуренцию плазменным матрицам и имеют весомые перспективы в будущем. Тем не менее TFT матрицы также развиваются. Сейчас на рынке можно встретить TFT-TN и TFT-HD дисплеи. Они практически не уступают в качестве изображения IPS матрицам, но при этом имеет более доступную стоимость. Но на данный момент устройств с такими мониторами не так много.

Если для вас важно качество изображения и вы готовы незначительно доплатить, то устройство с IPS дисплеем является оптимальным выбором.

В этом руководстве мы расскажем как использовать TFT LCD дисплеи с Arduino, начиная с базовых команд и заканчивая профессиональным дизайном.

В этой статье вы узнаете, как использовать TFT LCD с платами Arduino. Мы постараемся освятить базовые команды, а также расскажем про профессиональные дизайны и технику. По планам поле статьи можно будет научиться:

  • выводить тексты, символы и цифры с нужным шрифтом;
  • рисовать фигуры, такие как круг, треугольник, квадрат и т.д.;
  • отображать изображения.bmp на экране;
  • изменять параметры экрана, такие как вращение и инвертирование цвета;
  • отображать анимацию с помощью Arduino.

Из Википедии : Жидкокристаллический дисплей с активной матрицей (TFT LCD, англ. thin-film transistor - тонкоплёночный транзистор) - разновидность жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами.

В проектах электроники очень важно создать интерфейс между пользователем и системой. Этот интерфейс может быть создан путем отображения полезных данных, меню и простоты доступа. Красивый дизайн не менее важен.

Для этого есть несколько компонентов. Светодиоды, 7 сегментные модули, графические дисплеи и полноцветные TFT-дисплеи. Правильный компонент для ваших проектов зависит от количества отображаемых данных, типа взаимодействия с пользователем и емкости процессора.

TFT LCD - это вариант жидкокристаллического дисплея (LCD), который использует технологию тонкопленочного транзистора (TFT) для улучшения качества изображения, такого как адресность и контрастность. TFT LCD является активным матричным ЖК-дисплеем, в отличие от пассивных матричных ЖК-дисплеев или простых ЖК-дисплеев с прямым управлением с несколькими сегментами.

В проектах на Arduino частота процессора низкая. Таким образом, невозможно отображать сложные изображения высокой четкости и высокоскоростные движения. Поэтому полноцветные TFT-дисплеи могут использоваться только для отображения простых данных и команд.

В этой статье мы использовали библиотеки и передовую технику для отображения данных, графиков, меню и т.д. с профессиональным дизайном. Таким образом любой ваш проект будет выглядеть просто невероятно классно.

Какого размера? Какой контроллер?

Размер экранов влияет на параметры вашего проекта. Большой дисплей не всегда лучше. Если вы хотите отображать символы и изображения высокого разрешения, вы должны выбрать большой размер дисплея с более высоким разрешением. Но это уменьшает скорость вашей обработки, требует больше места, а также требует больше тока для запуска.

Итак, во-первых, вы должны проверить разрешение, скорость движения, детали цвета и размера изображений, текстов и цифр. Мы предлагаем популярные размеры дисплеев Arduino, таких как:

  • 3,5" дюйма 480 × 320,
  • 2,8" дюйма 400 × 240,
  • 2,4" дюйма 320 × 240,
  • 1,8" дюйма 220 × 176.

Выбрав правильный дисплей, пришло время выбрать правильный контроллер. Если вы хотите отображать символы, тексты, цифры и статические изображения и скорость отображения не важна, платы Atmega328 Arduino (такие как ) являются правильным выбором.

Если размер вашего кода является большим, UNO может оказаться недостаточной. Вместо этого вы можете использовать . И если вы хотите показывать изображения с высоким разрешением и движения с высокой скоростью, вы должны использовать ARM-модули Arduino, такие как Arduino DUE.

Драйверы и библиотеки

В электронике / компьютерном оборудовании драйвер дисплея обычно представляет собой полупроводниковую интегральную схему (но может альтернативно содержать конечную машину, состоящую из дискретной логики и других компонентов), который обеспечивает функцию интерфейса между микропроцессором, микроконтроллером, ASIC или периферийным интерфейсом общего назначения и конкретным типом устройства отображения, например LCD, LED, OLED, ePaper, CRT, Nixie и т.п.

Драйвер дисплея обычно принимает команды и данные с использованием стандартного универсального последовательного или параллельного интерфейса общего назначения, такого как TTL, CMOS, RS232, SPI, I2C и т.д. и генерирует сигналы с подходящим напряжением, током, временем и демультиплексированием, чтобы реализовать на дисплее отображение нужного текста или изображения.

Производители ЖК-дисплеев используют разные драйверы в своих продуктах. Некоторые из них более популярны, а некоторые из них неизвестны. Чтобы легко запускать ваш экран, вы должны использовать библиотеки LCD Arduino и добавить их в свой код. В противном случае запуск дисплея может быть очень осложнен. В Интернете есть много бесплатных библиотек, но важным моментом в библиотеках является их совместимость с драйвером ЖК-дисплея. Драйвер вашего ЖК-дисплея должен быть известен вашей библиотеке. В этой статье мы используем библиотеку Adafruit GFX и библиотеку MCUFRIEND KBV и примеры кода. Вы сможете скачать их по сопутствующим ссылкам.

Разархивируйте MCUFRIEND KBV и откройте MCUFRIEND_kbv.CPP. Вы увидите список драйверов, которые поддерживаются библиотекой MCUFRIEND.

Откройте папку с примерами (англ. - Example). Существует несколько примеров кода, которые вы можете запустить на Arduino. Подключите ЖК-дисплей и проверьте некоторые примеры.

Список комплектующих

Для реализации многих проектов, связанных с TFT LCD нам понадобится набор некоторых комплектующих, которые мы уже обсудили выше:

  • 3.5-дюймовый цветной TFT-дисплей ElectroPeak × 1
  • 2,4-дюймовый дисплей TFT LCD ElectroPeak × 1
  • Arduino UNO R3 × 1
  • Arduino Mega 2560 × 1
  • Arduino DUE × 1

Программное обеспечение

Также для работы с Ардуино нам обычно нужна .

Код

Вы должны добавить библиотеку, а затем загрузить код. Если вы впервые запускаете плату Arduino, не волнуйтесь. Просто выполните следующие действия:

  • Перейдите на нашего сайта или на сайт www.arduino.cc/en/Main/Software и загрузите программное обеспечение для вашей ОС. Установите программное обеспечение в соответствии с инструкциями.
  • Запустите среду разработки Arduino, очистите текстовый редактор и скопируйте код в текстовый редактор.
  • Перейдите к эскизу и включите библиотеки. Нажмите "добавить ZIP-библиотеку" и добавьте библиотеки.
  • Выберите плату в "Tools and Boards", выберите свою плату Arduino.
  • Подключите Arduino к компьютеру и установите COM-порт в "Tools and port".
  • Нажмите кнопку «Загрузить» (стрелка).
  • Теперь все настроено!

После загрузки кода примера пришло время узнать, как создавать изображения на ЖК-дисплее.

Библиотека

#include "Adafruit_GFX.h" #include "MCUFRIEND_kbv.h"

В первой строке добавлена основная графическая библиотека для дисплеев (написанная Adafruit).

Вторая добавляет библиотеку, которая поддерживает драйверы экранов дисплея MCUFRIEND Arduino.

#include "TouchScreen.h" // только если вы хотите использовать сенсорный экран #include "bitmap_mono.h" // когда вы хотите отображать растровое изображение из библиотеки #include "bitmap_RGB.h" // когда вы хотите отображать растровое изображение из библиотеки #include "Fonts/FreeSans9pt7b.h" // когда вам нужны другие шрифты #include "Fonts/FreeSans12pt7b.h" // когда вам нужны другие шрифты #include "Fonts/FreeSerif12pt7b.h" // когда вам нужны другие шрифты #include "FreeDefaultFonts.h" // когда вам нужны другие шрифты #include "SPI.h" // использование sdcard для отображения растрового изображения #include "SD.h"

Эти библиотеки сейчас не нужны, но вы можете их добавить.

Основные команды

Класс и объект

//(int CS=A3, int RS=A2, int WR=A1, int RD=A0, int RST=A4) MCUFRIEND_kbv tft(A3, A2, A1, A0, A4);

Эта строка делает объект с именем TFT из класса MCUFRIEND_kbv и обеспечивает связь SPI между ЖК-дисплеем и Arduino.

Запуск ЖК-дисплея

uint16_t ID = tft.readID(); tft.begin(ID);

Функция tft.readID считывает ID с дисплея и помещает его в переменную идентификатора. Затем функция tft.begin получает идентификатор и ЖК-дисплей готов к работе.

Разрешение экрана

tft.width(); //int16_t width(void); tft.height(); //int16_t height(void);

По этим двум функциям вы можете узнать разрешение дисплея. Просто добавьте их в код и поместите выходные данные в переменную uint16_t . Затем прочитайте его из последовательного порта Serial.println(); . Сначала добавьте Serial.begin (9600); в setup() .

Цвет экрана

tft.fillScreen(t); //fillScreen(uint16_t t);

Функция fillScreen меняет цвет экрана на цвет t . Это должна быть 16-битная переменная, содержащая код цвета UTFT .

#define BLACK 0x0000 #define NAVY 0x000F #define DARKGREEN 0x03E0 #define DARKCYAN 0x03EF #define MAROON 0x7800 #define PURPLE 0x780F #define OLIVE 0x7BE0 #define LIGHTGREY 0xC618 #define DARKGREY 0x7BEF #define BLUE 0x001F #define GREEN 0x07E0 #define CYAN 0x07FF #define RED 0xF800 #define MAGENTA 0xF81F #define YELLOW 0xFFE0 #define WHITE 0xFFFF #define ORANGE 0xFD20 #define GREENYELLOW 0xAFE5 #define PINK 0xF81F

Вы можете добавить эти строки в начало своего кода и просто использовать имя цвета в функциях.

Заполнение пикелей

tft.drawPixel(x,y,t); //drawPixel(int16_t x, int16_t y, uint16_t t) tft.readPixel(x,y); //uint16_t readPixel(int16_t x, int16_t y)

Функция drawPixel заполняет пиксель в x и y по цвету t.

Функция readPixel считывает цвет пикселя в местоположении x и y.

Рисование линий

tft.drawFastVLine(x,y,h,t); //drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t t) tft.drawFastHLine(x,y,w,t); //drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t t) tft.drawLine(xi,yi,xj,yj,t); //drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint16_t t)

Функция drawFastVLine рисует вертикальную линию, которая начинается с местоположения x, y, ее длина - h пикселей, а цвет - t.

Функция drawFastHLine рисует горизонтальную линию, которая начинается с местоположения x и y, длина равна w пикселей, а цвет - t.

Функция drawLine рисует строку, начинающуюся с xi, yi и до xj, yj, цвет - t.

For (uint16_t a=0; a<5; a++) { tft.drawFastVLine(x+a, y, h, t);} for (uint16_t a=0; a<5; a++) { tft.drawFastHLine(x, y+a, w, t);} for (uint16_t a=0; a<5; a++) { tft.drawLine(xi+a, yi, xj+a, yj, t);} for (uint16_t a=0; a<5; a++) { tft.drawLine(xi, yi+a, xj, yj+a, t);}

Эти три блока кода рисуют линии, подобные предыдущему коду с 5-пиксельной толщиной.

Tft.fillRect(x,y,w,h,t); //fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t t) tft.drawRect(x,y,w,h,t); //drawRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t t) tft.fillRoundRect(x,y,w,h,r,t); //fillRoundRect (int16_t x, int16_t y, int16_t w, int16_t h, uint8_t R , uint16_t t) tft.drawRoundRect(x,y,w,h,r,t); //drawRoundRect(int16_t x, int16_t y, int16_t w, int16_t h, uint8_t R , uint16_t t)

Функция fillRect рисует заполненный прямоугольник в координатах x и y, w - ширина, h - высота, t - цвет прямоугольника.

Функция drawRect рисует прямоугольник в координатах x и y с шириной w, высотой h и цветом t.

Функция fillRoundRect рисует заполненный прямоугольник с радиусом углов r, в координатах x и y, шириной w и высотой h, цветом t.

Функция drawRoundRect рисует прямоугольник с r радиальными закругленными углами по x и y, с шириной w и высотой h и цветом t.

Рисуем круги

tft.drawCircle(x,y,r,t); //drawCircle(int16_t x, int16_t y, int16_t r, uint16_t t) tft.fillCircle(x,y,r,t); //fillCircle(int16_t x, int16_t y, int16_t r, uint16_t t)

Функция drawCircle рисует круг по координатам x и y, с радиусом r и цветом t.

Функция fillCircle рисует заполненный круг по координатам x и y, радиусом r и цветом t.

For (int p = 0; p < 4000; p++) { j = 120 * (sin(PI * p / 2000)); i = 120 * (cos(PI * p / 2000)); j2 = 60 * (sin(PI * p / 2000)); i2 = 60 * (cos(PI * p / 2000)); tft.drawLine(i2 + 160, j2 + 160, i + 160, j + 160, col[n]); }

Этот код рисует дугу. Можно изменить значение в «for» между 0 и 4000.

Рисование треугольников

tft.drawTriangle(x1,y1,x2,y2,x3,y3,t); //drawTriangle(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3,// uint16_t t) tft.fillTriangle(x1,y1,x2,y2,x3,y3,t); //fillTriangle(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3,// uint16_t t)

Функция drawTriangle рисует треугольник с тремя угловыми координатами x, y и z и t цветом.

Функция fillTriangle рисует заполненный треугольник с тремя угловыми координатами x, y, z и t цветом.

Отображение текста

tft.setCursor(x,y); //setCursor(int16_t x, int16_t y)

Этот код устанавливает позицию курсора на x и y.

Tft.setTextColor(t); //setTextColor(uint16_t t) tft.setTextColor(t,b); //setTextColor(uint16_t t, uint16_t b)

Первая строка задает цвет текста. Следующая строка задает цвет текста и его фона.

Tft.setTextSize(s); //setTextSize(uint8_t s)

Этот код устанавливает размер текста величиной s . Само число s меняется в диапазоне от 1 до 5.

Tft.write(c); //write(uint8_t c)

Этот код отображает символ.

Tft.println("www.Electropeak.com"); tft.print("www.Electropeak.com");

Первая функция отображает строку и перемещает курсор на следующую строку.

Вторая функция просто отображает строку.

ShowmsgXY(x,y,sz,&FreeSans9pt7b,"www.Electropeak.com"); //void showmsgXY(int x, int y, int sz, const GFXfont *f, const char *msg) void showmsgXY(int x, int y, int sz, const GFXfont *f, const char *msg) { uint16_t x1, y1; uint16_t wid, ht; tft.setFont(f); tft.setCursor(x, y); tft.setTextColor(0x0000); tft.setTextSize(sz); tft.print(msg); }

Эта функция изменяет шрифт текста. Вы должны добавить эту функцию и библиотеки шрифтов.

For (int j = 0; j < 20; j++) { tft.setCursor(145, 290); int color = tft.color565(r -= 12, g -= 12, b -= 12); tft.setTextColor(color); tft.print("www.Electropeak.com"); delay(30); }

Эта функция может заставить текст исчезать. Вы должны добавить её в свой код.

Вращение экрана

tft.setRotation(r); //setRotation(uint8_t r)

Этот код поворачивает экран. 0 = 0°, 1 = 90°, 2 = 180°, 3 = 270°.

Инвертирование цветов экрана

tft.invertDisplay(i); //invertDisplay(boolean i)

Этот код инвертирует цвета экрана.

Tft.color565(r,g,b); //uint16_t color565(uint8_t r, uint8_t g, uint8_t b)

Этот код передает код RGB и получает цветовой код UTFT.

Прокрутка экрана

for (uint16_t i = 0; i < maxscroll; i++) { tft.vertScroll(0, maxscroll, i); delay(10);}

Этот код прокручивает ваш экран. Maxroll - максимальная высота прокрутки.

Сброс

tft.reset();

Этот код сбрасывает экран.

Отображение монохромных изображений

static const uint8_t name PROGMEM = { //Добавьте код изображения здесь. } tft.drawBitmap(x, y, name, sx, sy, 0x0000);

Сначала вы должны преобразовать свое изображение в шестнадцатеричный код. Загрузите программное обеспечение по ссылке ниже. Если вы не хотите изменять настройки программного обеспечения, вы должны инвертировать цвет изображения, отразить изображение горизонтально (зеркально) и повернуть его на 90 градусов против часовой стрелки.

Теперь добавьте его в программное обеспечение и преобразуйте его. Откройте экспортированный файл и скопируйте шестнадцатеричный код в Arduino IDE. x и y - местоположения изображения. sx и sy - размеры изображения. Вы можете изменить цвет изображения на последнем input .

Отображение цветного изображения RGB

const uint16_t name PROGMEM = { //Add image code here. } tft.drawRGBBitmap(x, y, name, sx, sy);

Сначала вы должны преобразовать свое изображение в код. Используйте эту ссылку для преобразования изображения:

Загрузите изображение и скачайте преобразованный файл, с которым могут работать библиотеки UTFT. Теперь скопируйте шестнадцатеричный код в Arduino IDE. x и y - местоположения изображения. sx и sy - размер изображения.

Вы можете ниже качать программу-конвертер изображений в шестнадцатеричный код:

Предварительно созданные элементы

В этом шаблоне мы просто использовали строку и 8 заполненных кругов, которые меняют свои цвета по порядку. Чтобы нарисовать круги вокруг статической точки, вы можете использовать sin(); и cos(); функции. Вы должны задать величину PI. Чтобы изменить цвета, вы можете использовать функцию color565(); и заменить свой код RGB.

#include "Adafruit_GFX.h" #include "MCUFRIEND_kbv.h" MCUFRIEND_kbv tft; #include "Fonts/FreeSans9pt7b.h" #include "Fonts/FreeSans12pt7b.h" #include "Fonts/FreeSerif12pt7b.h" #include "FreeDefaultFonts.h" #define PI 3.1415926535897932384626433832795 int col; void showmsgXY(int x, int y, int sz, const GFXfont *f, const char *msg) { int16_t x1, y1; uint16_t wid, ht; tft.setFont(f); tft.setCursor(x, y); tft.setTextColor(0x0000); tft.setTextSize(sz); tft.print(msg); } void setup() { tft.reset(); Serial.begin(9600); uint16_t ID = tft.readID(); tft.begin(ID); tft.setRotation(1); tft.invertDisplay(true); tft.fillScreen(0xffff); showmsgXY(170, 250, 2, &FreeSans9pt7b, "Loading..."); col = tft.color565(155, 0, 50); col = tft.color565(170, 30, 80); col = tft.color565(195, 60, 110); col = tft.color565(215, 90, 140); col = tft.color565(230, 120, 170); col = tft.color565(250, 150, 200); col = tft.color565(255, 180, 220); col = tft.color565(255, 210, 240); } void loop() { for (int i = 8; i > 0; i--) { tft.fillCircle(240 + 40 * (cos(-i * PI / 4)), 120 + 40 * (sin(-i * PI / 4)), 10, col); delay(15); tft.fillCircle(240 + 40 * (cos(-(i + 1)*PI / 4)), 120 + 40 * (sin(-(i + 1)*PI / 4)), 10, col); delay(15); tft.fillCircle(240 + 40 * (cos(-(i + 2)*PI / 4)), 120 + 40 * (sin(-(i + 2)*PI / 4)), 10, col); delay(15); tft.fillCircle(240 + 40 * (cos(-(i + 3)*PI / 4)), 120 + 40 * (sin(-(i + 3)*PI / 4)), 10, col); delay(15); tft.fillCircle(240 + 40 * (cos(-(i + 4)*PI / 4)), 120 + 40 * (sin(-(i + 4)*PI / 4)), 10, col); delay(15); tft.fillCircle(240 + 40 * (cos(-(i + 5)*PI / 4)), 120 + 40 * (sin(-(i + 5)*PI / 4)), 10, col); delay(15); tft.fillCircle(240 + 40 * (cos(-(i + 6)*PI / 4)), 120 + 40 * (sin(-(i + 6)*PI / 4)), 10, col); delay(15); tft.fillCircle(240 + 40 * (cos(-(i + 7)*PI / 4)), 120 + 40 * (sin(-(i + 7)*PI / 4)), 10, col); delay(15); } }

Классический текст

В этом шаблоне мы выбрали классический шрифт и использовали функцию для затухания текста.

#include "Adafruit_GFX.h" // Core graphics library #include "MCUFRIEND_kbv.h" // Hardware-specific library MCUFRIEND_kbv tft; #include "Fonts/FreeSans9pt7b.h" #include "Fonts/FreeSans12pt7b.h" #include "Fonts/FreeSerif12pt7b.h" #include "FreeDefaultFonts.h" void showmsgXY(int x, int y, int sz, const GFXfont *f, const char *msg) { int16_t x1, y1; uint16_t wid, ht; tft.setFont(f); tft.setCursor(x, y); tft.setTextSize(sz); tft.println(msg); } uint8_t r = 255, g = 255, b = 255; uint16_t color; void setup() { Serial.begin(9600); uint16_t ID = tft.readID(); tft.begin(ID); tft.invertDisplay(true); tft.setRotation(1); } void loop(void) { tft.invertDisplay(true); tft.fillScreen(WHITE); color = tft.color565(40, 40, 40); tft.setTextColor(color); showmsgXY(50, 40, 1, &FreeSerif12pt7b, " I love those who can smile in trouble,"); delay(40); tft.println(" who can gather strength from distress,"); delay(40); tft.println(" and grow brave by reflection."); delay(40); tft.println(" "Tis the business of little minds to shrink,"); delay(40); tft.println(" but they whose heart is firm,"); delay(40); tft.println(" and whose conscience approves their conduct,"); delay(40); tft.println(" will pursue their principles unto death."); delay(40); tft.println(" "); delay(700); for (int j = 0; j < 20; j++) { tft.setCursor(145, 290); color = tft.color565(r -= 12, g -= 12, b -= 12); tft.setTextColor(color); tft.print(" ---- Da Vinci ----"); delay(30); } while (1); }

Представление/презентация логотипа

В этом шаблоне мы преобразовали файл a.jpg в файл .c и добавили его в код, написали строку и использовали отображаемый код затухания. Затем мы использовали код прокрутки, чтобы переместить экран влево. Загрузите файл .h и добавьте его в папку эскиза Arduino.

#include "Adafruit_GFX.h" // Core graphics library #include "MCUFRIEND_kbv.h" // Hardware-specific library MCUFRIEND_kbv tft; #include "Ard_Logo.h" #define BLACK 0x0000 #define RED 0xF800 #define GREEN 0x07E0 #define WHITE 0xFFFF #define GREY 0x8410 #include "Fonts/FreeSans9pt7b.h" #include "Fonts/FreeSans12pt7b.h" #include "Fonts/FreeSerif12pt7b.h" #include "FreeDefaultFonts.h" void showmsgXY(int x, int y, int sz, const GFXfont *f, const char *msg) { int16_t x1, y1; uint16_t wid, ht; tft.setFont(f); tft.setCursor(x, y); tft.setTextSize(sz); tft.println(msg); } uint8_t r = 255, g = 255, b = 255; uint16_t color; void setup() { Serial.begin(9600); uint16_t ID = tft.readID(); tft.begin(ID); tft.invertDisplay(true); tft.setRotation(1); } void loop(void) { tft.invertDisplay(true); tft.fillScreen(WHITE); tft.drawRGBBitmap(100, 50, Logo, 350, 200); delay(1000); tft.setTextSize(2); for (int j = 0; j < 20; j++) { color = tft.color565(r -= 12, g -= 12, b -= 12); tft.setTextColor(color); showmsgXY(95, 280, 1, &FreeSans12pt7b, "ELECTROPEAK PRESENTS"); delay(20); } delay(1000); for (int i = 0; i < 480; i++) { tft.vertScroll(0, 480, i); tft.drawFastVLine(i, 0, 320, 0xffff); // vertical line delay(5);} while (1); }

Точечная диаграмма

В этом шаблоне мы использовали линии рисования, заполненные круги и функции отображения строк.

#include "Adafruit_GFX.h" #include "MCUFRIEND_kbv.h" MCUFRIEND_kbv tft; uint16_t ox=0,oy=0; int ave=0, avec=0, avet=0; //////////////////////////////////////////////////////////////// void aveg(void) {int z=0; Serial.println(ave); Serial.println(avec); avet=ave/avec; Serial.println(avet); avet=avet*32; for (int i=0; i<24; i++){ for (uint16_t a=0; a<3; a++){ tft.drawLine(avet+a, z, avet+a, z+10, 0xFB21);} // thick for (uint16_t a=0; a<2; a++){ tft.drawLine(avet-a, z, avet-a, z+10, 0xFB21);} delay(100); z=z+20; } } ////////////////////////////////////////////////////////////////// void dchart_10x10(uint16_t nx,uint16_t ny) { ave+=nx; avec++; nx=nx*32; ny=ny*48; tft.drawCircle(nx, ny, 10, 0x0517); tft.drawCircle(nx, ny, 9, 0x0517); tft.fillCircle(nx, ny, 7, 0x0517); delay (100); ox=nx; oy=ny; } /////////////////////////////////////////////////////////////////////// void dotchart_10x10(uint16_t nx,uint16_t ny) { ave+=nx; avec++; nx=nx*32; ny=ny*48; int plus=0; float fplus=0; int sign=0; int y=0,x=0; y=oy; x=ox; float xmines, ymines; xmines=nx-ox; ymines=ny-oy; if (ox>nx) {xmines=ox-nx; sign=1;} else sign=0; for (int a=0; a<(ny-oy); a++) { fplus+=xmines/ymines; plus=fplus; if (sign==1) tft.drawFastHLine(0, y, x-plus, 0xBFDF); else tft.drawFastHLine(0, y, x+plus, 0xBFDF); y++; delay(5);} for (uint16_t a=0; a<2; a++){ tft.drawLine(ox+a, oy, nx+a, ny, 0x01E8);} // thick for (uint16_t a=0; a<2; a++){ tft.drawLine(ox, oy+a, nx, ny+a, 0x01E8);} ox=nx; oy=ny; } //////////////////////////////////////////////////////////////////// void setup() { tft.reset(); Serial.begin(9600); uint16_t ID = tft.readID(); tft.begin(ID); } void loop() { tft.invertDisplay(true); tft.fillScreen(0xffff); dotchart_10x10(3, 0); dotchart_10x10(2, 1); dotchart_10x10(4, 2); dotchart_10x10(4, 3); dotchart_10x10(5, 4); dotchart_10x10(3, 5); dotchart_10x10(6, 6); dotchart_10x10(7, 7); dotchart_10x10(9, 8); dotchart_10x10(8, 9); dotchart_10x10(10, 10); dchart_10x10(3, 0); dchart_10x10(2, 1); dchart_10x10(4, 2); dchart_10x10(4, 3); dchart_10x10(5, 4); dchart_10x10(3, 5); dchart_10x10(6, 6); dchart_10x10(7, 7); dchart_10x10(9, 8); dchart_10x10(8, 9); dchart_10x10(10, 10); tft.setRotation(1); tft.setTextSize(2); tft.setTextColor(0x01E8); tft.setCursor(20, 20); tft.print("Average"); int dl=20; for (int i=0;i<6;i++){ for (uint16_t a=0; a<3; a++){ tft.drawLine(dl, 40+a, dl+10, 40+a, 0xFB21);} dl+=16;} tft.setRotation(0); aveg(); while(1); }

Температура

В этом шаблоне мы использовали sin(); и cos(); функции для рисования дуг с желаемой толщиной и отображаемым числом с помощью функции текстовой печати. Затем мы преобразовали изображение в шестнадцатеричный код и добавили его в код и отобразили изображение с помощью функции растрового изображения. Затем мы использовали функцию рисования линий, чтобы изменить стиль изображения. Загрузите файл.h и добавьте его в папку эскиза Arduino.

#include "Adafruit_GFX.h" #include "MCUFRIEND_kbv.h" #include "Math.h" MCUFRIEND_kbv tft; #include "Temperature.h" #define PI 3.1415926535897932384626433832795 int a=1000,b=3500; int n, f; int j, j2 ,lj; int i, i2 ,li; int pct = 0; int d = {20, 20, 20, 20, 20}; uint16_t col = {0x7006, 0xF986, 0x6905, 0x7FF7, 0x024D}; void setup() { tft.reset(); Serial.begin(9600); uint16_t ID = tft.readID(); tft.begin(ID); tft.invertDisplay(true); tft.setTextSize(2); } void loop() { // put your main code here, to run repeatedly: tft.fillScreen(0xffff); tft.setRotation(1); tft.drawBitmap(350, 70, Temp, 70, 180, 0x0000); tft.fillCircle(385,213,25,tft.color565(255, 0, 0)); for (int p = 0; p < 4000; p++) { j = 120 * (sin(PI * p / 2000)); i = 120 * (cos(PI * p / 2000)); j2 = 110 * (sin(PI * p / 2000)); i2 = 110 * (cos(PI * p / 2000)); tft.drawLine(i2 + 160, j2 + 160, i + 160, j + 160, tft.color565(100, 100, 100)); } ///////////////////////////////////////////////////////////////////// if (b>a){ while (aКруговая диаграмма

В этом шаблоне мы создали функцию, которая принимает числа как входные данные и отображает их как круговую диаграмму. Мы просто используем дугу рисования и заполненные функции круга.

#include "Adafruit_GFX.h" #include "MCUFRIEND_kbv.h" #include "Math.h" MCUFRIEND_kbv tft; #define PI 3.1415926535897932384626433832795 int n, f; int j, j2; int i, i2; int pct = 0; int d = {10, 60, 16, 9, 10}; uint16_t col = {0x7006, 0xF986, 0x6905, 0x7FF7, 0x024D}; void setup() { tft.reset(); Serial.begin(9600); uint16_t ID = tft.readID(); tft.begin(ID); tft.invertDisplay(true); tft.setTextSize(2); } void loop() { // put your main code here, to run repeatedly: tft.fillScreen(0x0042); tft.setRotation(1); for (int p = 0; p < 4000; p++) { j = 120 * (sin(PI * p / 2000)); i = 120 * (cos(PI * p / 2000)); j2 = 60 * (sin(PI * p / 2000)); i2 = 60 * (cos(PI * p / 2000)); tft.drawLine(i2 + 160, j2 + 160, i + 160, j + 160, col[n]); } n = 0; for (int a = 0; a < 5; a++) { pct += d[n] * 40; f = 4000 - pct; for (int b = 0; b < f; b++) { j = 120 * (sin(PI * b / 2000)); i = 120 * (cos(PI * b / 2000)); j2 = 60 * (sin(PI * b / 2000)); i2 = 60 * (cos(PI * b / 2000)); tft.drawLine(i2 + 160, j2 + 160, i + 160, j + 160, col); } tft.fillCircle(380, 100 + (30 * n), 10, col[n]); tft.setTextColor(0xffff); tft.setCursor(400, 94 + (30 * n)); tft.print(d[n]); tft.print("%"); n++; } while (1); }

Музыка

#include "Adafruit_GFX.h" #include "MCUFRIEND_kbv.h" MCUFRIEND_kbv tft; #include "Volume.h" #define BLACK 0x0000 int a = 0,b = 4000,c = 1000,d = 3000; int s=2000; int j, j2; int i, i2; int White; void setup() { Serial.begin(9600); uint16_t ID = tft.readID(); tft.begin(ID); tft.invertDisplay(true); tft.setRotation(1); } void loop(void) { tft.invertDisplay(true); tft.fillScreen(BLACK); tft.drawRGBBitmap(0, 0, test, 480, 320); White = tft.color565(255, 255, 255); while(1){ if (a < s) { j = 14 * (sin(PI * a / 2000)); i = 14 * (cos(PI * a / 2000)); j2 = 1 * (sin(PI * a / 2000)); i2 = 1 * (cos(PI * a / 2000)); tft.drawLine(i2 + 62, j2 + 240, i + 62, j + 240, White); j = 14 * (sin(PI * (a-300) / 2000)); i = 14 * (cos(PI * (a-300) / 2000)); j2 = 1 * (sin(PI * (a-300) / 2000)); i2 = 1 * (cos(PI * (a-300) / 2000)); tft.drawLine(i2 + 62, j2 + 240, i + 62, j + 240, 0x0000); tft.fillRect(50, 285, 30, 30, 0x0000); tft.setTextSize(2); tft.setTextColor(0xffff); tft.setCursor(50, 285); tft.print(a / 40); tft.print("%"); a++; } if (b < s) { j = 14 * (sin(PI * b / 2000)); i = 14 * (cos(PI * b / 2000)); j2 = 1 * (sin(PI * b / 2000)); i2 = 1 * (cos(PI * b / 2000)); tft.drawLine(i2 + 180, j2 + 240, i + 180, j + 240, White); j = 14 * (sin(PI * (b-300) / 2000)); i = 14 * (cos(PI * (b-300) / 2000)); j2 = 1 * (sin(PI * (b-300) / 2000)); i2 = 1 * (cos(PI * (b-300) / 2000)); tft.drawLine(i2 + 180, j2 + 240, i + 180, j + 240, 0x0000); tft.fillRect(168, 285, 30, 30, 0x0000); tft.setTextSize(2); tft.setTextColor(0xffff); tft.setCursor(168, 285); tft.print(b / 40); tft.print("%"); b++;} if (c < s) { j = 14 * (sin(PI * c / 2000)); i = 14 * (cos(PI * c / 2000)); j2 = 1 * (sin(PI * c / 2000)); i2 = 1 * (cos(PI * c / 2000)); tft.drawLine(i2 + 297, j2 + 240, i + 297, j + 240, White); j = 14 * (sin(PI * (c-300) / 2000)); i = 14 * (cos(PI * (c-300) / 2000)); j2 = 1 * (sin(PI * (c-300) / 2000)); i2 = 1 * (cos(PI * (c-300) / 2000)); tft.drawLine(i2 + 297, j2 + 240, i + 297, j + 240, 0x0000); tft.fillRect(286, 285, 30, 30, 0x0000); tft.setTextSize(2); tft.setTextColor(0xffff); tft.setCursor(286, 285); tft.print(c / 40); tft.print("%"); c++;} if (d < s) { j = 14 * (sin(PI * d / 2000)); i = 14 * (cos(PI * d / 2000)); j2 = 1 * (sin(PI * d / 2000)); i2 = 1 * (cos(PI * d / 2000)); tft.drawLine(i2 + 414, j2 + 240, i + 414, j + 240, White); j = 14 * (sin(PI * (d-300) / 2000)); i = 14 * (cos(PI * (d-300) / 2000)); j2 = 1 * (sin(PI * (d-300) / 2000)); i2 = 1 * (cos(PI * (d-300) / 2000)); tft.drawLine(i2 + 414, j2 + 240, i + 414, j + 240, 0x0000); tft.fillRect(402, 285, 30, 30, 0x0000); tft.setTextSize(2); tft.setTextColor(0xffff); tft.setCursor(402, 285); tft.print(d / 40); tft.print("%"); d++;} if (a > s) { j = 14 * (sin(PI * a / 2000)); i = 14 * (cos(PI * a / 2000)); j2 = 1 * (sin(PI * a / 2000)); i2 = 1 * (cos(PI * a / 2000)); tft.drawLine(i2 + 62, j2 + 240, i + 62, j + 240, White); j = 14 * (sin(PI * (a+300) / 2000)); i = 14 * (cos(PI * (a+300) / 2000)); j2 = 1 * (sin(PI * (a+300) / 2000)); i2 = 1 * (cos(PI * (a+300) / 2000)); tft.drawLine(i2 + 62, j2 + 240, i + 62, j + 240, 0x0000); tft.fillRect(50, 285, 30, 30, 0x0000); tft.setTextSize(2); tft.setTextColor(0xffff); tft.setCursor(50, 285); tft.print(a / 40); tft.print("%"); a--;} if (b > s) { j = 14 * (sin(PI * b / 2000)); i = 14 * (cos(PI * b / 2000)); j2 = 1 * (sin(PI * b / 2000)); i2 = 1 * (cos(PI * b / 2000)); tft.drawLine(i2 + 180, j2 + 240, i + 180, j + 240, White); j = 14 * (sin(PI * (b+300) / 2000)); i = 14 * (cos(PI * (b+300) / 2000)); j2 = 1 * (sin(PI * (b+300) / 2000)); i2 = 1 * (cos(PI * (b+300) / 2000)); tft.drawLine(i2 + 180, j2 + 240, i + 180, j + 240, 0x0000); tft.fillRect(168, 285, 30, 30, 0x0000); tft.setTextSize(2); tft.setTextColor(0xffff); tft.setCursor(168, 285); tft.print(b / 40); tft.print("%"); b--;} if (c > s) { j = 14 * (sin(PI * c / 2000)); i = 14 * (cos(PI * c / 2000)); j2 = 1 * (sin(PI * c / 2000)); i2 = 1 * (cos(PI * c / 2000)); tft.drawLine(i2 + 297, j2 + 240, i + 297, j + 240, White); j = 14 * (sin(PI * (c+300) / 2000)); i = 14 * (cos(PI * (c+300) / 2000)); j2 = 1 * (sin(PI * (c+300) / 2000)); i2 = 1 * (cos(PI * (c+300) / 2000)); tft.drawLine(i2 + 297, j2 + 240, i + 297, j + 240, 0x0000); tft.fillRect(286, 285, 30, 30, 0x0000); tft.setTextSize(2); tft.setTextColor(0xffff); tft.setCursor(286, 285); tft.print(c / 40); tft.print("%"); c--;} if (d > s) { j = 14 * (sin(PI * d / 2000)); i = 14 * (cos(PI * d / 2000)); j2 = 1 * (sin(PI * d / 2000)); i2 = 1 * (cos(PI * d / 2000)); tft.drawLine(i2 + 414, j2 + 240, i + 414, j + 240, White); j = 14 * (sin(PI * (d+300) / 2000)); i = 14 * (cos(PI * (d+300) / 2000)); j2 = 1 * (sin(PI * (d+300) / 2000)); i2 = 1 * (cos(PI * (d+300) / 2000)); tft.drawLine(i2 + 414, j2 + 240, i + 414, j + 240, 0x0000); tft.fillRect(402, 285, 30, 30, 0x0000); tft.setTextSize(2); tft.setTextColor(0xffff); tft.setCursor(402, 285); tft.print(d / 40); tft.print("%"); d--;} } }

Спидометр

#include "Adafruit_GFX.h" // Core graphics library #include "MCUFRIEND_kbv.h" MCUFRIEND_kbv tft; #define BLACK 0x0000 #include "Gauge.h" #include "Fonts/FreeSans9pt7b.h" #include "Fonts/FreeSans12pt7b.h" #include "Fonts/FreeSerif12pt7b.h" #include "FreeDefaultFonts.h" int a = 1000; int b = 4000; int j, j2; int i, i2; void showmsgXY(int x, int y, int sz, const GFXfont *f, const char *msg) { int16_t x1, y1; uint16_t wid, ht; tft.setFont(f); tft.setCursor(x, y); tft.setTextSize(sz); tft.println(msg); } void setup() { Serial.begin(9600); uint16_t ID = tft.readID(); tft.begin(ID); tft.invertDisplay(true); tft.setRotation(1); } void loop(void) { tft.invertDisplay(true); tft.fillScreen(BLACK); tft.drawRGBBitmap(0, 0, test, 480, 320); if (a < b) { while (a < b) { Serial.println(a); j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 255, 255)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99) tft.setCursor(208, 160); else tft.setCursor(217, 160); tft.print(a / 20); a++; } b = 1000; } ////////////////////////////////////////////////////////////////// while (b < a) { j = 80 * (sin(PI * a / 2000)); i = 80 * (cos(PI * a / 2000)); j2 = 50 * (sin(PI * a / 2000)); i2 = 50 * (cos(PI * a / 2000)); tft.drawLine(i2 + 235, j2 + 169, i + 235, j + 169, tft.color565(0, 0, 0)); tft.fillRect(200, 153, 75, 33, 0x0000); tft.setTextSize(3); tft.setTextColor(0xffff); if ((a/20)>99) tft.setCursor(208, 160); else tft.setCursor(217, 160); tft.print(a / 20); a--; } while (1); }

Веселый человечек

В этом шаблоне мы отображаем простые изображения один за другим очень быстро с помощью функции растрового изображения. Таким образом, вы можете сделать свою анимацию этим трюком. Загрузите файл.h и добавьте его в папку эскиза Arduino.

#include "Adafruit_GFX.h" #include "MCUFRIEND_kbv.h" MCUFRIEND_kbv tft; #include "image.h" #include "Fonts/FreeSans9pt7b.h" #include "Fonts/FreeSans12pt7b.h" #include "Fonts/FreeSerif12pt7b.h" #include "FreeDefaultFonts.h" #define BLACK 0x0000 #define BLUE 0x001F #define RED 0xF800 #define GREEN 0x07E0 #define CYAN 0x07FF #define MAGENTA 0xF81F #define YELLOW 0xFFE0 #define WHITE 0xFFFF #define GREY 0x8410 #define ORANGE 0xE880 void showmsgXY(int x, int y, int sz, const GFXfont *f, const char *msg) { int16_t x1, y1; uint16_t wid, ht; tft.setFont(f); tft.setCursor(x, y); tft.setTextColor(WHITE); tft.setTextSize(sz); tft.print(msg); } void setup() { Serial.begin(9600); uint16_t ID = tft.readID(); tft.begin(ID); tft.setRotation(1); tft.invertDisplay(true); tft.fillScreen(tft.color565(0,20,0)); showmsgXY(20, 40, 2, &FreeSans9pt7b, "La Linea"); tft.setRotation(0); } void loop(){ while(1){ tft.drawBitmap(20, 180, Line1, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line2, 258, 128, WHITE);delay(40); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line3, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line4, 258, 128, WHITE);delay(40); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line5, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line6, 258, 128, WHITE);delay(40); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line7, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line8, 258, 128, WHITE);delay(40); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line9, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line10, 258, 128, WHITE);delay(40); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line11, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line12, 258, 128, WHITE);delay(40); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line13, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line14, 258, 128, WHITE);delay(40); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line15, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line16, 258, 128, WHITE);delay(40); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line17, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128,tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line18, 258, 128, WHITE);delay(40); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line19, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line20, 258, 128, WHITE);delay(40); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line21, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line22, 258, 128, WHITE);delay(40); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line23, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line24, 258, 128, WHITE);delay(40); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line25, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128,tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line26, 258, 128, WHITE);delay(40); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); tft.drawBitmap(20, 180, Line27, 258, 128, WHITE);delay(60); tft.fillRect(20, 180, 258, 128, tft.color565(0,20,0)); } }

Изображение

В этом шаблоне мы просто показываем некоторые изображения с помощью функций RGBbitmap и bitmap . Просто создайте код для сенсорного экрана и используйте этот шаблон. Загрузите файл.h и добавьте его в папку эскиза Arduino.

#include "Adafruit_GFX.h" // Core graphics library #include "MCUFRIEND_kbv.h" // Hardware-specific library MCUFRIEND_kbv tft; #define BLACK 0x0000 #define RED 0xF800 #define GREEN 0x07E0 #define WHITE 0xFFFF #define GREY 0x8410 #include "images.h" #include "Fonts/FreeSans9pt7b.h" #include "Fonts/FreeSans12pt7b.h" #include "Fonts/FreeSerif12pt7b.h" #include "FreeDefaultFonts.h" int a = 3000; int b = 4000; int j, j2; int i, i2; void showmsgXY(int x, int y, int sz, const GFXfont *f, const char *msg) { int16_t x1, y1; uint16_t wid, ht; // tft.drawFastHLine(0, y, tft.width(), 0xffff); tft.setFont(f); tft.setCursor(x, y); tft.setTextColor(WHITE); tft.setTextSize(sz); tft.print(msg); delay(1000); } void setup() { Serial.begin(9600); uint16_t ID = tft.readID(); tft.begin(ID); tft.invertDisplay(true); tft.setRotation(1); } void loop(void) { tft.invertDisplay(true); tft.fillScreen(BLACK); tft.drawRGBBitmap(0, 0, test, 480, 320); tft.drawBitmap(20, 20, Line1, 45, 45, 0xffff);//battery tft.drawBitmap(65, 20, Line2, 45, 45, 0xffff);//wifi tft.drawBitmap(125, 25, Line3, 45, 45, 0xffff);//mail tft.drawBitmap(185, 25, Line4, 45, 45, 0xffff);//instagram tft.drawBitmap(245, 25, Line6, 45, 45, 0xffff);//power tft.drawBitmap(20, 260, Line5, 45, 45, 0xffff);//twitter tft.drawBitmap(410, 140, Line7, 45, 45, 0xffff);//rain tft.setTextSize(6); tft.setTextColor(0xffff); tft.setCursor(280, 210); tft.print("20:45"); tft.setTextSize(2); tft.setTextColor(0xffff); showmsgXY(330, 280, 1, &FreeSans12pt7b, "Saturday"); showmsgXY(300, 305, 1, &FreeSans12pt7b, "6 October 2018"); while (1); }

Итог

Скачайте архив с файлами .h ниже:

  • Скорость воспроизведения всех файлов GIF отредактирована, они сделаны быстрее или медленнее для лучшего понимания. Скорость движений зависит от скорости вашего процессора или типа кода, а также от размера и толщины элементов в коде.
  • Вы можете добавить код изображения на главной странице, но он заполняет всю страницу. Таким образом, вы можете сделать файл a.h и добавить в папку эскиза.
  • В этой статье мы только что разобрали отображение элементов на ЖК-дисплее. Следите за следующим урокам, чтобы узнать, как используются сенсорные экраны и SD-карты.
  • Если у вас есть проблемы с включением библиотек, измените знак кавычки "" на <>.

На этом пока всё. Делитесь этим руководством по TFT LCD для Arduino со своими друзьями и коллегами.

По технологии TFT создают дисплеи всевозможных электроприборов, включая телевизоры, планшеты, компьютерные мониторы, мобильные телефоны, навигаторы и т.д. Бесспорно, экран в таких устройствах играет важную роль, поэтому перед покупкой техники и гаджетов стоит разобраться в тонкостях их изготовления. От конструкции дисплея зависит качество и четкость изображения, угол обзора, а также передача цветов. В некоторых случаях эти параметры имеют большое значение.

Понятие TFT-дисплея

TFT LCD – это разновидность жидкокристаллических дисплеев с активной матрицей. Каждый пиксель таких дисплеев управляется 1-4 тонкопленочными транзисторами (по англ. – Thin Film Transistor, сокращенно – TFT), которые помогают легко включать/выключать светодиоды, создавая более четкое, качественное изображение.

TFT-дисплей имеет две стеклянные подложки, внутри которых находится слой жидких кристаллов. В передней стеклянной подложке находится цветной фильтр. Задняя подложка содержит тонкие транзисторы, выстроенные в колонны и ряды. Позади всего находится подсветка.

Интересно знать: каждый пиксель представляет собой небольшой конденсатор со слоем жидкого кристалла, зажатого между прозрачными проводящими слоями из оксида индия-олова. Когда дисплей включается, молекулы в жидкокристаллическом слое изгибаются под определенным углом и пропускают свет. Это создает пиксель, который мы видим. В зависимости от угла изгиба молекул жидких кристаллов, возникает тот или иной цвет. Все пиксели вместе образуют картинку.

В стандартном TFT-мониторе присутствует 1,3 миллиона пикселей, каждый из которых контролирует свой транзистор. Состоят они из тонких пленок из аморфного кремния, нанесенных на стекло по технологии PECVD (этот метод обычно используется для создания микропроцессоров). Каждый элемент работает за счет небольшого заряда, поэтому перерисовка изображения происходит очень быстро, картинка обновляется много раз в секунду.

Стоит ли покупать технику с TFT-дисплеями?

Отображение движущихся изображений на большом ЖК-дисплее является непростой задачей, так как для этого нужно за доли секунды изменить состояние большого количества жидких кристаллов. В LCD с пассивными матрицами транзисторы расположены только вверху и слева экрана. Они контролируют целые строки и столбцы пикселей. В таких устройствах могут возникать перекрестные помехи, связанные с тем, что сигнал, посылаемый к одному пикселю, влияет на его «соседей». Из-за этого мы видим торможение или размытие картинки.

В TFT-дисплеях эта проблема отсутствует. Установка управляющего устройства в виде тонкопленочного транзистора прямо на пиксель предотвращает эффект размытия во время воспроизведения видео. Однонаправленная характеристика прохождения тока препятствует слиянию зарядов нескольких светодиодов. Поэтому сегодня технология Thin Film Transistor стала стандартом производства ЖК-экранов. Какие у нее еще есть плюсы?

  1. TFT позволяет получить стабильное, достаточно качественное изображение с хорошим углом обзора. При этом можно изготовить экран разного размера с разным разрешением (от калькулятора или смарт часов, до телевизора на всю стену).
  2. У таких экранов яркая подсветка, что важно для мобильных телефонов и компьютеров. Яркие светодиодные подсветки обеспечивают большую адаптивность, их можно отрегулировать, исходя из визуальных предпочтений пользователя. В некоторых устройствах есть функция автоматического регулирования уровня яркости в зависимости от освещения.
  3. Преимущества TFT над старыми ЭЛТ-мониторами очевидны. ЭЛТ громоздкие, тусклые и маленькие. От кинескопов выделяется большое количество тепла, а также электромагнитных излучений, что негативно сказывается на зрении. TFT-матрицы в этом плане безопасны.
  4. TFT-экраны имеют довольно выгодную цену, хотя данным способом изготавливают не только бюджетные девайсы, но и профессиональное, дорогостоящее оборудование.

С первого взгляда выглядит заманчиво. Однако перед покупкой нужно знать: есть несколько видов TFT-дисплеев и у них разные характеристики.

Разновидности TFT-дисплеев, их достоинства и недостатки

Такие названия, как TN, IPS и MVA – это все дисплеи с тонкопленочными транзисторами TFT. В этих названиях легко запутаться. Попробуем разобраться, чем они отличаются, и что же все-таки лучше.

Twited Nematic (TN) + Film

Это более простой, дешевый и быстрый вариант. Время отклика матрицы TFT TN экранов составляет всего 2-4 мс. Они могут отображать большее количество кадров в секунду, а это особенно важно при просматривании видео и игре в видеоигры.

Однако, устройства на базе TN имеет много недостатков в плане качества изображения:

  • угол обзора у TN-дисплея составляет всего 50-90 °. Значит получить полный эффект от графики на экране, изготовленном по технологии TFT TN, можно только глядя на него прямо. Если смотреть сбоку, сверху или снизу, картинка будет менять свой цвет;
  • низкие показатели контрастности (максимум 500:1) и маленький диапазон цветов. Такое устройство не передаст все цвета;
  • черный цвет в TN-экранах слишком яркий, ему не хватает глубины, а белый – недостаточно яркий, из-за чего при солнечном свете ничего не будет видно.

Если вы используете устройство для регулярного просмотра веб-страниц, работы в офисе или для других повседневных задач, тогда дисплей с технологией TFT TN удовлетворит ваши потребности. Также он подходит для геймеров, так как во время игры важнее все-таки скорость передачи изображения. Но для ведения бизнеса или выполнения графической работы, которая требует высочайшего уровня цветовой и графической точности, лучше всего выбрать дисплей с технологией IPS.

Super TFT (или IPS)

Технология IPS TFT решает все проблемы экрана TN. Основное отличие от панелей TN – направление движения кристаллов. В IPS-дисплеях они движутся параллельно плоскости панели, а не перпендикулярно к ней. Это изменение уменьшает рассеивание света в матрице и позволяет получить более широкие углы обзора (от 170 °), большой цветовой спектр (вплоть до 1 млрд.), высокую контрастность (1:1000). Черные цвета будут глубокими и более совершенными.

Однако, есть у IPS и недостаток: время ответа таких матриц составляет 10-20 мс, что маловато для современных видеоигр, хотя и приемлемо. У экранов AMOLED время отклика и того больше.

Нельзя сказать, что лучше: технология IPS или TN TFT. У каждой из них есть плюсы и минусы, поэтому нужно исходить из того, с какой целью покупается девайс. IPS широко используется в высококачественных мониторах, ориентированных на профессиональных графических художников.

MVA

Эта технология самая совершенная – она сочетает преимущества двух предыдущих вариантов. У MVA-дисплеев широкий угол обзора, отличная цветность и контрастность, глубокий черный цвет и вместе с тем оптимальное время отклика.

Если сравнивать дисплеи с технологией TFT IPS и SVA (разновидность MVA), то будет тяжело выбрать лучший вариант. У каждого есть достоинства. SVA имеет всего лишь небольшое отличие в строении – в таком дисплее кристаллы выравниваются по вертикали, а не по горизонтали. Это сказывается на их способности пропускать или блокировать свет, что определяет уровень яркости дисплея и передачу черного цвета. В SVA-дисплеях эти параметры находятся на высоте, хотя это не означает, что IPS показывает плохую картинку. По сравнению с IPS у SVA меньше угол обзора.

Недостатки

Тонкопленочные транзисторы очень чувствительны к колебаниям напряжения и механическим нагрузкам. Они могут легко повредиться, вследствие чего образуются «мертвые» пиксели – точки без изображения. Однако, экраны AMOLED, которые сейчас набирают популярности, еще более хрупкие. От перезагрузки или механического повреждения они перестают работать полностью.

Еще одни небольшой минус – толщина дисплея TFT. Из-за дополнительного слоя она будет немного больше, чем толщина плазменной панели, обычного LCD или AMOLED. Тем не менее TFT-экран вполне компактный.

Другим относительным недостатком технологии является большее потребление энергии, если сравнивать ее с другими типами экранов. Но опять-таки, TFT-дисплеи достаточно экономны для повседневного использования.

Проходясь по техническим описаниям современных смартфонов мы часто видим аббревиатуры TFT или IPS в графе дисплей.

TFT - это технология, в которой кристаллы в дисплее расположенны по спирали и при максимально возможном напряжении, они поворачиваются так, что экран показывает черный цвет, если напряжения нет мы увидим белый цвет. Используется как правило в бюджетных моделях, например . Такие дисплеи не могут выдавать идеальный черный цвет, на выходе получается темно серый.

IPS это та же TFT, но усовершенствованная

В IPS дисплеях нет никаких спиралей, это более дорогостоящая технология, которая используется в топовых смартфонах, например в или . В последнее время, все чаще встречаются бюджетные смартфоны, которые используют IPS экран, к ним можно отнести или , они относятся к средней ценовой категории.

Проще говоря, технология IPS это усовершенствованная TFT, которая намного качественнее отображает черный цвет и делает картинку на дисплее более контрасной нежели в TFT экранах. Экраны IPS, работают чуть медленее, однако, пользователь этого не замечает и данная черта может быть выявленна только в результате технологических тестов.

Более приоритетным использование TFT дисплеев видится в простых телефонах, которые человек покупает что бы звонить, а не в контакте сидеть, вот вам еще один пример звонилки . Приемущество кроется в гораздо более меньшем энергопотреблении нежели в IPS дисплеях. А вот современный смартфон с простым TFT дисплеем встретить можно все реже.

Не удивляйтесь, если в технических характеристиках дорогого смартфона вы увидите аббревиатуру TFT, это может быть IPS дисплей, ведь IPS - это разновидность TFT как и AMOLED и Super AMOLED.

От IPS и TFT появились производные технологии. У IPS это Super IPS и UA-IPS - по большому счету одно и то же, но с некоторыми усовершенствованиями. У TFT это TN+Film - способная к более качественной передаче оттенков.

Разница между качеством изображения в IPS и просто TFT бросается в глаза. При наклоне, обычный TFT без IPS технологии, чернеет так, что уже невозможно ничего разобрать, а вот с IPS держится, как ни в чем не бывало, удивительно, до чего дошли технологии)

Лучшие статьи по теме