Программы. Игры. Браузеры. Windows. Архиваторы
  • Главная
  • Для чайников
  • Оптоволоконная связь. Пропускная способность оптоволоконного кабеля Максимальная пропускная способность оптоволокна

Оптоволоконная связь. Пропускная способность оптоволоконного кабеля Максимальная пропускная способность оптоволокна

Оптические технологии передачи данных стали прорывом в области телекоммуникаций и сетей передачи данных, требующих высокой скорости передачи. За последние несколько лет исследования привели к появлению систем, которые способны передавать данные на скорости 10 Гб/с и выше. Одним из основных преимуществ оптического кабеля является его способность передавать высокоскоростные оптические сигналы на большие расстояния. Эта статья посвящена оптическому кабелю, принципам, на которых он работает, а также основным блокам систем передачи данных по оптоволокну.

Волоконно-оптические технологии просто используют свет для передачи данных. Использование оптического кабеля началось примерно с 1970 года, когда удалось снизить издержки на производство оптического кабеля и связанных с этим затрат.

Использование оптического кабеля

Волоконно-оптические кабели используются в широком спектре приложений: начиная от медицинского зондирования, заканчивая высокоскоростными сетями передачи оборонных данных. Передача данных осуществляется с помощью оптических передатчиков, передающих высокоскоростные сигналы специальным оптическим приемникам. При этом происходит преобразование цифровых сигналов в оптические и наоборот. Скорость передачи данных по оптическому кабелю достигает 10 Гб/с.

На сегодняшний день существует два типа оптического кабеля: одномодовый (SM) и многомодовый (MM). В последнее время все чаще слышны заявления о том, что многомодовый является более перспективным, обеспечивая более чем стократное превосходство по производительности относительно одномодового оптического кабеля.

Самое активное использование оптического кабеля происходит в телекоммуникационной отрасли. Изначально телефонные компании использовали оптический кабель для передачи больших объемов голосового трафика между центральными телефонными станциями. С 1980-х годов телефонные компании приступили к развертыванию оптических сетей повсеместно.

Пропускная способность оптического кабеля является его наиболее важной и значимой характеристикой. Чем больше полоса пропускания, тем выше скорость передачи и тем больше трафик. Медь имеет весьма ограниченную полосу пропускания и серьезные ограничения на длину кабеля, что делает медную пару менее приемлемой для передачи высокоскоростных сигналов на большие расстояния.

Использование оптического кабеля дает следующие преимущества:

  • Высокая полоса пропускания для передачи голоса или видеоизображения.
  • Оптические волокна могут нести в тысячи раз больше информации, чем медная проволока. Например, всего одна прядь волокна может передавать все телефонные разговоры Америки в час пик.
  • Оптический кабель легче чем медь примерно в 10 раз.
  • Низкие потери. Чем выше частота сигнала, тем больше потерь в медной паре. Потери сигнала в оптическом кабеле одинаковы на всех частотах, за исключением сверхвысоких частот.
  • Надежность - оптический кабель более надежен и имеет большее время жизни, чем медный кабель.
  • Защищенность - оптические волокна не излучают электромагнитных полей, нечувствительны к помехам.

Физический механизм передачи оптических сигналов

В современном приложении оптические кабели подразделяются на многомодовые (MM) и одномодовые (SM), однако и те и другие базируются на одних и тех же принципах. Передача сигнала по оптическому кабелю возможна благодаря явлению, которое называется полным внутренним отражением. Благодаря этому возможна передача оптического сигнала на высокой скорости на большие расстояния.

Одномодовый оптический кабель или многомодовый?

SM и MM кабели различаются по своим размерам, что в свою очередь, влияет на проходящий по оптоволокну сигнал. SM кабели используют толщину основного волокна от 8 до 10 микрон, что позволяет передавать только одну длину волны. MM кабели, напротив, используют более толстое основное волокно примерно 50-60 микрон, что позволяет передавать несколько длин волн одновременно. В SM кабелях меньше величина затухания, что дает возможность использовать их на больших расстояниях. MM кабель позволяет передавать больше данных. Т.о. MM кабель обычно используется на небольших расстояниях, там где необходимо передавать данные с большой скоростью, например в системах хранилищ данных.

Строительные блоки волоконно-оптических систем

Типичная схема оптоволоконной системы состоит из передатчика, оптического кабеля и приемника. Передатчик преобразовывает цифровые электрические сигналы в оптические, которые дальше передаются по оптическому кабелю, обеспечивая высокую скорость передачи и независимость от электромагнитных помех.
Оптический кабель состоит из оптического волокна и двух разъемах на концах, обычно ST, SC, или FC, в зависимости от конфигурации приемника и передатчика.

Оптическое волокно состоит из центрального волокна толщиной несколько микрон, оболочки, которая обеспечивает полное оптическое отражение сигнала и внешней оплетки, которая обеспечивает защиту и идентификацию оптического кабеля.

Таким образом, строительство и эксплуатация волоконно-оптических систем является аппаратно-ориентированной на передачу сигнала на большие расстояния. Зачастую задача именно так и ставится: с помощью оптического кабеля передать с низким затуханием высокоскоростной сигнал на большое расстояние с приемлемым уровнем финансовых затрат.

Конструкция оптического кабеля

состоит из нескольких элементов. Оптический кабель состоит из нескольких элементов: из сердцевины, облицовки и внешнего покрытия. В основе оптического кабеля лежит сердцевина, по которой происходит передача световых сигналов. В основе сердцевины лежит кремний и германий. Оболочка, окружающая сердцевину оптического кабеля состоит из кремния и имеет коэффициент преломления несколько ниже центральной сердцевины. Показатель преломления - это отношение скорости света в вакууме к скорости света в материале. Скорость света в вакууме равна 300 000 000 метров в секунду. Чем выше показатель преломления, тем ниже скорость света в материале. Например, коэффициент преломления света в чистом воздухе равен 1, что означает скорость света в воздухе 300 000 км/c. Коэффициент преломления в стекле 1,5, что означает скорость света в стекле 200 000 км/c.



Несколько слоев буферных обшивок защищают центральную жилу. Защита служит для уменьшения физических нагрузок на кабель, таких как растяжение, изгиб и т.п. Наружная оплетка защищает от внешних воздействий, таких как экологические (температура, влажность, агрессивная среда).

Для соединения оптического кабеля наиболее часто используется SC коннекторы. SC коннектор обеспечивает наибольшую плотность упаковки. Системные администраторы должны учитывать особенности оптического кабеля и активного оборудования для выбора соответствующего типа коннектора.


Типы оптического кабеля

Одномодовый оптический кабель имеет очень маленькую сердцевину как правило 8-10 микрон, что позволяет передавать световые сигналы без устройств повторения на расстояния до 80 км, в зависимости от типа оборудования. SC оптический кабель обладает огромным информационным потенциалом из-за того, что имеет практически неограниченную пропускную способность.

Многомодовый может передавать несколько световых волн, он имеет более толстую сердцевину размером около 50 или 62,5 микрон. Из-за дисперсии многомодовый оптический кабель имеет большее затухание.

Оптика

Любая оптическая система состоит из трех компонентов: передатчика, среднего (волокно кабеля) и приемника. Передатчик преобразует электрические сигналы в свет и направляет его по волокну. Приемник получает световой сигнал и преобразует его в электрический
сигнал. Существуют два вида передатчиков: лазерного диод либо светодиод.

Выходная мощность передатчика указывает на количество энергии, излучаемой в определенный квант времени. Чем выше мощность, тем больше расстояние передачи сигнала. Передатчик имеет возможность изменять скорость передачи для удовлетворения потребности в пропускной способности системы. Диапазон длин волн, излучаемых источником сигнала находится в спектральной ширине.

Приемопередатчики отличаются чувствительностью к состоянию окружающей среды. Лазерный диод требует стабильного напряжения и температуры. Светодиоды являются менее чувствительны к колебаниям окружающей среды. Лазерные диоды являются более дорогостоящими. Светодиодные оптические источники имеют меньшее время жизни, но их легче устанавливать и они более экономичные.

Заключение
Несмотря на то, что развитие использования оптического кабеля началось в телекоммуникационной среде, сегодня это уже обычное дело. Многие компании и промышленные предприятия воспользовались оптоволоконными системами для увеличения производительности своих . Один из вопросов, с которым сталкиваются некоторые предприятия заключается в том, чтобы подключить к оптоволоконной системе имеющееся оборудование и инфраструктуру без дорогих обновлений. Используя медиаконвертеры, позволяющие соединять обычные сетевые каналы на базе медной витой пары и оптоволокна, возможно подключить практически любое сетевое оборудование. Медиаконвертеры предназначены для облегчения перехода на использование оптического кабеля, сводя к минимуму затраты на устранение возникающих проблем.

Внимание! Копирование и перепечатка информации с этого сайта запрещены без письменного согласия администрации.

Создание технологии передачи сигнала с помощью света, проходящему по стержням из кварцевого стекла, можно считать величайшим открытием ХХ века. Это произошло в 1934 году, когда в Америке был получен патент на оптическую телефонную линию.

С тех пор развитие волоконно-оптических линий связи стало приоритетным направлением в создании проводных систем передачи данных на большие расстояния с высокой скоростью и структурированных кабельных систем.

Что тормозит пропускную способность оптоволокна

  • пропускная способность оптоволокна позволяет уже сегодня передавать данные до 10Гбит/сек
  • слабое затухание сигнала дает возможность передачи информации на большие расстояния без усилителей
  • невосприимчивость к перекрестным электромагнитным влияниям
  • информационная безопасность

Еще 20 лет назад мы наслаждались интернетом через телефонные сети и модемы со скоростью 10 Кбит/сек. Но время диктует свои требования, поэтому сегодняшние достижения и возможности оптических линий связи нельзя считать удовлетворительными.

Решение новых задач по обработке данных требует запаса производительности сети. Повышение скорости передачи по оптоволокну связано с использованием дополнительного активного оборудования.

К проблемным факторам, которые тормозят дальнейшее развитие оптических сетей, можно отнести:

  • затухание сигнала из-за рассеивания и поглощения фотонов света
  • использование нескольких частот пропускания уменьшает скорость передачи
  • искажение сигнала за счет многократного преломления

На сегодняшний день одним из недостатков оптических линий связи является дорогостоящее активное оборудование. Поэтому решение задачи лежит в другой плоскости.

Будущее оптоволоконных сетей

Вместе с технологиями оптического мультиплексирования и усовершенствования приемопередающего оборудования продолжаются работы по созданию нового волокна. В 2014 году ученые Датского Технического университета установили мировой рекорд - максимальная скорость передачи данных по оптоволокну составила 43Тбит/с.

Они использовали новый вид оптического волокна, разработанное японской компанией. Сигнал передавался по волокну, имеющему 7 сердцевин от одного лазерного источника. Пока что это лабораторные исследование, которые не внедрены в эксплуатацию. Однако, новые разработки и достижения обязательно приведут к увеличению пропускной способности и снижению затрат на постройку ВОЛП.

Без сомнения, оптоволоконная технология станет в будущем главным средством передачи информации. Она является одной из причин массового роста международных телекоммуникаций и эффекта "сжатия планеты". На основе этой технологии Интернет смог стать тем неоценимым информационным средством, каким он сегодня является. Однако вопреки распространенному мнению, это не панацея. У оптоволоконных систем все еще есть множество ограничений и препятствий, которые надо преодолеть. Перед тем как начать обсуждать теорию оптоволоконной передачи, сравним традиционные и оптоволоконные кабели и оценим их достоинства и недостатки.

1.2.1. Полоса пропускания

Оптоволокно

Сегодня у оптоволоконных кабелей огромная полоса пропускания со скоростями передачи до 40 Гбит/с, действующими уже сегодня, и свыше 100 Гбит/с, ожидающимися в ближайшем будущем. Факторами, ограничивающими рост скоростей передачи, в настоящее время являются: во-первых, большое по сравнению с периодами импульсов время ответа источников и детекторов для высоких скоростей передачи данных; во-вторых, близость длины волны света к периоду импульса, вызывающая проблемы дифференцирования в детекторах. Методы мультиплексирования нескольких длин волн в одном волокне (называемые спектральным уплотнением (WDM, wave division multiplexing) увеличивают общую скорость передачи по одному волокну до нескольких Тбит/с.

Следующее сравнение позволит почувствовать, что это означает в терминах передачи информации: при оптоволоконной связи на скорости примерно 1 Гбит/с можно одновременно передавать свыше 30 ООО сжатых телефонных разговоров. При связи на скорости 30 Гбит/с можно одновременно передавать до 1 миллиона телефонных разговоров по единственному стеклянному волокну!

Кабели

Коаксиальные кабели диаметром до 8 см могут обеспечить скорости передачи до 1 Гбит/с на расстояниях до 10 км. Ограничивающим фактором является очень высокая стоимость меди.

В настоящее время продолжается важное исследование по увеличению скорости передачи через кабели с витыми парами. Сегодня во многих локальных сетях скорости 100 Мбит/с являются вполне обычными. Доступны также коммерческие системы, действующие на скоростях до 1 Гбит/с. После успешных лабораторных испытаний на скоростях 10 Гбит/с соответствующая продукция готовится к коммерческому выпуску. Причина такой активной деятельности в этой области кроется в избытке инфраструктуры с уже, установленными кабелями с витой парой, что позволяет значительно сэкономить на рытье траншей, прокладке каналов и укладке новых оптоволоконных кабелей. По этой причине технология кабелей с витой парой в настоящее время успешно конкурирует с оптоволоконной технологией, поскольку обе они имеют множество общих приложений.

1.2.2. Помехи

Оптоволокно

На оптоволоконные кабели совершенно не воздействуют электромагнитные помехи (EMI), радиочастотные помехи (RFI), молнии и скачки высокого напряжения. Они не страдают от проблем емкостных или индуктивных сопряжений. При правильном проектировании на оптоволоконные кабели не должны воздействовать электромагнитные импульсы от ядерных взрывов и фоновой радиации. (Это известие утешит большую часть населения после ядерной войны!)

В дополнение к этому факту оптоволоконные кабели не создают никаких электромагнитных или радиочастотных помех. Это свойство очень ценно для производства вычислений, обработки видео- и аудиоинформации, где все более важным для возросшего качества воспроизведения и записи становится окружение с низким шумом.

Кабели

На обычные кабели влияют внешние помехи. В зависимости от типов кабелей и степеней их экранирования, они в разной степени подвержены электромагнитным и радиопомехам через индуктивные, емкостные и резистивные связи. Системы связи на основе традиционных кабелей полностью выходят из строя под действием электромагнитных импульсов ядерных взрывов.

Обычные кабели также излучают электромагнитные волны, что может вызвать помехи в других кабельных системах связи. Объем излучения зависит от величины передаваемого сигнала и качества экрана.

1.2.5. Электроизоляция

Оптоволокно

Оптоволоконные кабели обеспечивают полную гальваническую развязку между обоими концами кабеля. Непроводимость волокон делает кабели нечувствительными к скачкам напряжения. Это устраняет электромагнитные и эфирные помехи, которые могут быть вызваны контурами заземления, синфазными напряжениями, а также смещениями и короткими замыканиями потенциала земли. Оптоволоконный кабель действует как длинный изолятор. Поскольку оптические волокна не излучают волны и не подвержены помехам, еще одним их преимуществом является отсутствие взаимного влияния кабелей (то есть воздействия излучения одного кабеля связи на другой, проложенный рядом с ним).

Кабели

Традиционные кабели, просто работая по своему предназначению, предоставляют электрическое соединение между своими концами. Следовательно, они восприимчивы к электромагнитным и эфирным помехам от контуров заземления, синфазных напряжений и смещений потенциала земли. Они также подвержены проблемам взаимного влияния.

1.2.4. Расстояния передачи

Оптоволокно

Для простых дешевых оптоволоконных систем возможны расстояния между повторителями до 5 км. Для высококачественных коммерческих систем теперь без труда доступны расстояния между "повторителями до 300 км. Были разработаны системы (без использования повторителей) на расстояния до 400 км. В лабораторных условиях достигнуты расстояния, близкие к 1000 км, но на рынке они пока недоступны. Одна европейская компания заявила, что в настоящее время разрабатывает оптоволоконный кабель, который можно проложить вдоль земного экватора и без всяких повторителей по нему можно будет передавать4сигнал с одного его конца на другой! Как такое возможно? При использовании слегка радиоактивной оболочки входящие фотоны с низкой энергией возбуждают в этой оболочке электроны, которые, в свою очередь, излучают фотоны с большей энергией. Таким образом возникает некоторая форма автоусиления. В следующих главах читателю будут разъяснены использованные термины.

Кабели

На рынке кабелей с витой парой на скорости передачи 4 Мбит/с доступны расстояния между повторителями до 2,4 км. В случае коаксиальных кабелей на скоростях менее 1 Мбит/с между повторителями возможны расстояния до 25 км.

1.2.5. Размер и вес

Оптоволокно

По сравнению со всеми другими кабелями для передачи жданных, оптоволоконные кабели очень малы в диаметре и чрезвычайно легки. Четырехжильный оптоволоконный кабель весит примерно 240 кг/км, а 36-основный оптоволоконный кабель весит примерно лишь на 3 кг больше. Из-за своих небольших по сравнению с традиционными кабелями с такой же пропускной способностью размеров их обычно проще устанавливать в существующих условиях, а время установки и стоимость в общем ниже, поскольку они легки и с ними проще работать.

Кабели

Традиционный кабель может весить от 800 кг/км для кабеля с 36 витыми парами до 5 т/км для высококачественного коаксиального кабеля большого диаметра.

Оптоволоконный или просто оптический кабель является одним из самых популярных проводников. Он используется повсеместно как для создания новых кабельных систем, так и для обновления старых. Все потому, что оптоволоконный кабель имеет множество преимуществ перед медным. Именно их мы и рассмотрим в этой статье.

  • Пропускная способность

Чем выше пропускная способность, тем больше информации можно передавать. Оптоволоконный кабель обеспечивает большую пропускную способность: до 10Гбит/с и выше. Это лучшие показатели, чем у медного кабеля. Стоит также учитывать, что скорость передачи будет разной у разных типов кабеля. Например, одномодовый оптоволоконный кабель обеспечивает большую пропускную способность, чем многомодовый.

  • Расстояния и скорость

При использовании оптоволоконного кабеля информация передается с большей скоростью и на более дальние расстояния практически без потери сигнала. Эта возможность обеспечивается благодаря тому, что сигнал передается через оптику в виде световых лучей. Оптоволокно лишено ограничения на расстояние в 100 метров, как это можно наблюдать с неэкранированным медным кабелем без усилителя. Расстояние, на которое возможно передать сигнал, также будет зависеть от типа используемого кабеля, длины волны и самой сети. Расстояния варьируются от 550 метров для многомодового типа до 40 километров для одномодового типа кабеля.

  • Безопасность

С оптоволоконным кабелем вся ваша информация находится в безопасности. Сигнал, передаваемый по оптике, не излучается и его очень сложно перехватить. Если же кабель был поврежден, это легко отследить, так как он будет пропускать свет, что в итоге приведет к остановке всей передачи. Таким образом, если будет совершенна попытка физического взлома вашей оптоволоконной системы, вы обязательно узнаете об этом.

Стоить отметить, что оптоволоконные сети позволяют разместить всю электронику и оборудования в одном централизованном месте.

  • Надежность и прочность

Оптоволокно обеспечивает максимально надежную передачу данных. Оптический кабель имеет иммунитет ко множеству факторов, которые легко могут повлиять на работу медного кабеля. Центр жилы сделан из стекла, изолирующего от электрического тока. Оптика полностью устойчива к радио- и электромагнитным излучениям, взаимным помехам, проблемам с сопротивлением и многим другим факторам. Оптоволоконный кабель можно прокладывать рядом с промышленным оборудованием без каких-либо опасений. К тому же, оптоволоконный кабель не так чувствителен к температуре, как медный кабель, и легко может быть размещен в воде.

  • Внешний вид

Оптоволоконный кабель легче, тоньше и долговечнее в сравнении с медным. Для достижения больших скоростей передачи с использованием медного кабеля потребуется использование лучшего типа кабеля, который обычно более тяжелый, имеет больший диаметр и занимает больше места. Небольшие размеры оптического кабеля делают его более удобным. Также стоит отметить, что провести тестирование оптоволоконного кабеля намного легче, чем медного.

  • Конвертация

Большое распространение и низкая стоимость медиаконвертеров существенно упрощают передачу данных от медного кабеля к оптоволоконному. Конвертеры обеспечивают бесперебойное соединение с возможностью использования уже существующего оборудования.

  • Сварка кабеля

Хотя сварка оптоволоконного кабеля на сегодняшний день проходит более трудоемко, чем обжим медного кабеля, при использовании специальных инструментов для сварки этот процесс проходит намного легче.

  • Стоимость

Стоимость оптоволоконного кабеля, компонентов и оборудования для него постепенно снижается. На данный момент оптоволоконный кабель стоит дороже медного только в рамках короткого промежутка времени. Но при длительном использовании оптоволоконный кабель выйдет дешевле медного. Оптоволокно легче обслуживать, оно требует меньше сетевого оборудования. В дополнении ко всему, в наши дни появляется все больше решений, работающих с оптоволоконным кабелем: начиная от активных оптических кабелей HDMI и заканчивая профессиональными решениями для Digital Signage, подобно ZyPer4K от компании ZeeVee, представленного недавно на выставке NEC’s Solutions Showcase 2015 и позволяющего легко удлинять и переключать сигналы несжатого 4K видео, аудио и управления с использованием стандартной технологии 10Gb Ethernet через оптоволоконный кабель.

Лучшие статьи по теме